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Abstract. Mass loss from the Antarctic Ice Sheet is the main source of uncertainty in projections of future sea-level rise, with 

important implications for coastal regions worldwide. Central to this is the marine ice sheet instability: once a critical threshold, 

or tipping point, is crossed, ice-internal dynamics can drive a self-amplifying retreat committing a glacier to irreversible, rapid 

and substantial ice loss. This process might have already been triggered in the Amundsen Sea region, where Pine Island and 

Thwaites glaciers dominate the current mass loss from Antarctica, but modelling and observational techniques have not been 15 

able to establish this rigorously, leading to divergent views on the future mass loss of the WAIS. Here, we aim at closing this 

knowledge gap by conducting a systematic investigation of the stability regime of Pine Island Glacier. To this end we show 

that early warning indicators robustly detect critical slowing for the marine ice sheet instability. We are thereby able to identify 

three distinct tipping points in response to increases in ocean-induced melt. The third and final event, triggered by an ocean 

warming of approximately 1.2 °C from the steady state model configuration, leads to a retreat of the entire glacier that could 20 

initiate a collapse of the West Antarctic Ice Sheet. 

1. Introduction 

The West Antarctic Ice Sheet (WAIS) is a tipping element of the earth system (Lenton et al., 2008) and its collapse, potentially 

driven by the Marine Ice Sheet Instability (MISI) (Feldmann and Levermann, 2015), would result in over 3m of sea level rise 

(Fretwell et al., 2013). Key to the MISI are the conditions at the grounding line - the transition line at which the grounded ice 25 

begins to float on the ocean forming ice shelves. In steady state, ice flux across the grounding line balances the surface 

accumulation upstream. If a grounding line retreats over a region of bed where ice flux increases and is not balanced by a 

corresponding increase in accumulation, the net mass balance is negative and retreat will continue (Weertman, 1974; Schoof, 

2007). Conversely, grounding line advance leading to an increasing accumulation greater than the change in flux will lead to 

a continued advance. In this regime, a small perturbation in forcing can result in the system crossing a tipping point, beyond 30 

which a positive feedback propels the system to a contrasting state (Fig. 1c). A complex range of factors can either cause or 
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suppress the MISI (Haseloff, 2018; Pegler, 2018) and the difficulties in predicting this behaviour are a major source of 

uncertainty for future sea level rise projections (Church et al., 2013; Bamber et al., 2019; Oppenheimer et al., in press; Robel 

et al. 2019).  

 35 

One area of particular concern is the Amundsen Sea region. Pine Island (PIG) and Thwaites glaciers, the two largest glaciers 

in the area, are believed to be particularly vulnerable to the MISI (Favier et al., 2014; Rignot et al., 2014). Palaeo and 

observational records of PIG show a history of retreat, driven by both natural and anthropogenic variability in ocean forcing 

(Jenkins et al., 2018; Holland et al., 2019). One possible MISI driven retreat might have happened when PIG unpinned from 

a submarine ridge in the 1940s (Jenkins et al., 2010, Smith et al., 2016). Recent modelling studies indicate that a larger scale 40 

MISI event may now be underway for both Pine Island and Thwaites glaciers that would lead to substantial and sustained mass 

loss throughout the coming centuries (Favier et al., 2014, Jenkins et al., 2016, Joughin et al., 2010). Being able to identify a 

MISI driven retreat and differentiate this from an externally forced retreat where a tipping point has not been crossed is vital 

information for projections of future sea level rise. 
 45 

This tipping behaviour of the MISI is an example of a fold (or saddle-node) bifurcation in which three equilibria exist; an 

upper and lower stable branch and a middle unstable branch (Fig. 1c) (Schoof, 2007). Starting on the upper stable branch, 

perturbing the system beyond a tipping point (x1 in Fig. 1c) will induce a catastrophic shift to the lower and contrasting stable 

state. Importantly (and in contrast to a system such as that shown in Fig.1a and 1b), in order to restore conditions to the state 

prior to a collapse it is not sufficient to simply reverse the forcing to its previous value. Instead, the forcing must be taken back 50 

further (to point x2), which in some cases may be far beyond the parameter space that triggered the initial collapse. This type 

of behaviour is known as hysteresis. A large change in response to a small forcing is not necessarily indicative of a hysteresis, 

as shown in Fig.1b. Tipping points are crossed in both Fig. 1c and Fig. 1d and both cases are often referred to as irreversible, 

although the two are distinct in that only Fig. 1d is irreversible for any change in the control parameter. Diagnosing whether 

or not a tipping point has been crossed without some prior knowledge of the system is not generally possible without reversing 55 

the forcing to see if a hysteresis has occurred. An alternative approach to identify tipping points is based on a process known 

as critical slowing, which is known to precede fold bifurcations of this type (Wissel, 1984; van Nes and Scheffer, 2007; Davos 

et al., 2008; Scheffer et al., 2009). Critical slowing is a general feature of non-linear systems and refers to an increase in the 

time a system takes to recover from perturbations as a tipping point is approached (Wissel, 1984). We will explore both 

hysteresis and critical slowing as indicators of tipping points in our model simulations. 60 

 
Here, we map out the stability regime of Pine Island Glacier using numerical model simulations. We force the model with a 

slowly increasing ocean melt rate and identify three periods of rapid retreat with the methodology explained in Sect. 2.1. Using 

statistical tools from dynamical systems theory, introduced in Sect. 2.2, we find critical slowing preceding each of these retreat 
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events and go on to demonstrate that these are indeed tipping points in Sect. 3. This is confirmed by analysing the hysteresis 65 

behaviour of the glacier, showing the existence of unstable grounding line positions. To our knowledge, this is the first time 

that the stability regime of Pine Island Glacier has been investigated in this detail and the first time that tipping point indicators 

have been applied to ice sheet model simulations. Our results reveal the existence of multiple smaller tipping points that when 

crossed could easily be mis-identified as simply periods of rapid retreat, with the irreversible and the self-sustained aspect of 

the retreat being missed.  70 

2. Methods 

We conduct a quasi-steady modelling experiment whereby we subject PIG to slowly increasing rates of basal melt underneath 

its adjacent ice shelf (Fig. 2). We differentiate between these simulations and simulations run to a true steady state, discussed 

later, in which the melt rate is held at a constant value and the simulation continues until the change in ice volume is 

approximately equal to zero. Quasi-steady state experiments have previously been successfully applied to identify the tipping 75 

point of the Greenland Ice Sheet with respect to the melt-elevation feedback (Robinson et al., 2012). We use basal melt rate 

as the control parameter, since erosion of ice shelves by the intrusion of warm ocean currents is widely accepted as the 

mechanism responsible for the considerable changes currently observed in this region (Shepherd et al., 2004, Rignot et al., 

2014; Rignot 1998; Joughin et al., 2010; Park et al., 2013, Gudmundsson et al., 2019). Sub-ice-shelf melt rates are increased 

linearly from a value that generates a steady state for the present-day glacier configuration. Based on the numerical experiments 80 

we then evaluate early warning indicators to test for critical slowing.  

2.1 Model description 

All simulations use the community Úa ice-flow model (Gudmundsson et al., 2012; Gudmundsson 2013, Gudmundsson 2020), 

which solves the dynamical equations for ice flow in the shallow ice stream approximation (SSTREAM or SSA) (Hutter, 

1983). Bedrock geometry for the Pine Island Glacier domain is a combination of the R-Topo2 dataset (Schaffer et al., 2016) 85 

and, where available, an updated bathymetry of the Amundsen Sea Embayment (Millan et al., 2014). Surface ice topography 

is from CryoSat-2 altimetry (Slater et al., 2018). Depth-averaged ice density is calculated using a meteoric ice density of 917 

kg m-3 together with firn depths obtained from the RACMO2.1 firn densification model (Ligtenberg et al., 2011). Snow 

accumulation is a climatological record obtained from RACMO2.1 (Lenaerts et al., 2012). 

 90 

Viscous ice deformation is described by the Glen Steineman flow law 𝜀𝜀̇ = 𝐴𝐴𝜏𝜏𝐸𝐸𝑛𝑛 with exponent 𝑛𝑛 = 3 and basal motion is 

modelled using a Weertman sliding law 𝑢𝑢𝑏𝑏 = 𝐶𝐶𝜏𝜏𝑏𝑏𝑚𝑚  with exponent𝑚𝑚 = 3 . Rheology and sliding use spatially varying 

parameters for the ice rate factor (𝐴𝐴) and basal slipperiness(𝐶𝐶), respectively, to initialise the model with present day ice 

velocities. These are obtained via inverse methods using satellite observations of surface ice velocity from the Landsat 8 dataset 

(Scambos et al. 2016; Fahnestock et al. 2016). An optimal solution is obtained by minimising a cost function that includes 95 
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both the misfit between observed and modelled velocities and regularisation terms, to avoid overfitting. An additional term in 

the cost function penalises initial changes in ice thickness in order to avoid large transients at the start of simulations. This 

approach helps to provide a steady-state configuration of PIG from which we can conduct our perturbation experiments. 

 

The Úa model solves the system of equations with the finite element method on an unstructured mesh, generated with mesh2d 100 

(Engwirda et al. 2014). The mesh remains fixed throughout the simulation to avoid contaminating the time series with errors 

resulting from remapping fields onto a new mesh. The mesh is refined in regions of high strain rate gradients, fast ice flow and 

around the grounding line. The region of grounding line mesh refinement, in which the average element size is ~750m, extends 

upstream sufficiently far so that the grounding line always remains within this region until after the final MISI collapse. 

 105 

Basal melt rates are calculated using a widely used, local quadratic dependency on thermal forcing: 

𝑀𝑀 = 𝑓𝑓𝛾𝛾𝑇𝑇 �
𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝
𝜌𝜌𝑖𝑖𝐿𝐿𝑖𝑖

�
2
�𝑇𝑇0 − 𝑇𝑇𝑓𝑓��𝑇𝑇0 − 𝑇𝑇𝑓𝑓�, 

where 𝛾𝛾𝑇𝑇 is the constant heat exchange velocity, 𝜌𝜌𝑤𝑤 is sea water density, 𝑐𝑐𝑝𝑝 is the specific heat capacity of water, 𝜌𝜌𝑖𝑖 is ice 

density, 𝐿𝐿𝑖𝑖 is the latent heat of fusion of ice, 𝑇𝑇0 is the thermal forcing and 𝑇𝑇𝑓𝑓 is the freezing temperature (Favier et al. 2019). 

The initial melt rate factor (𝑓𝑓) is chosen such that the model finds a steady state with a grounding line approximately coincident 110 

with its position as given in Bedmap2 (Fretwell et al. 2013). This melt rate factor forms the control parameter for our Pine 

Island simulations and is increased linearly to drive the region to collapse. The statistical methods outlined below rely on 

extracting the time it takes for the system to return to a steady state after small perturbations (referred to hereafter as the 

recovery time). We therefore add a synthetic melt rate variability to our linearly increasing forcing, generated as a surrogate 

time series of an Amundsen Sea ocean temperature proxy (Jenkins et al. 2018). As shown in more detail below, this ensures 115 

that the system response contains sufficient variability to extract information about critical slowing and thereby facilitating the 

calculation of early warning indicators.  

2.2 Critical slowing and early warning indicators 

As complex systems approach a tipping point, they show early warning signals which can allow us to anticipate or even predict 

the onset of a tipping event (Wissel, 1984). Evidence of these early warnings have been found to precede, for example, collapse 120 

of the thermohaline circulation (Held and Kleinen, 20014; Lenton, 2011), onset of epileptic seizures (Litt, 2001; McSharry 

and Tarassenko, 2003), crashes in financial markets (May et al., 2008, Diks et al., 2018), onset of glacial terminations (Lenton, 

2011) and wildlife population collapses (Scheffer et al., 2001). Critical slowing is one example of an early warning signal that 

has been used extensively in various studies of this kind. Using this approach to detect a MISI event is first validated with an 

idealised flowline setup of a marine ice sheet, in which we determine the change in recovery time before a tipping point directly 125 

through multiple stepwise perturbations of the control parameter (Appendix A). Identifying critical slowing in this way is 

straightforward but is not practical for a realistic model forcing which would not normally take the form of a step function. A 
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more general approach, which we adopt for our simulation of PIG, is to analyse the recovery time of the system as it is forced 

with natural variability using statistical tools.  
 130 

A first decision to make is what quantity to measure in order to look for critical slowing in our model simulations and there 

are a number of possible options. One choice could be changes in ice volume, since it can be related to sea level rise and ice 

sheet model simulations tend to focus on this result. However ice volume varies very smoothly over time, making it difficult 

to detect changes in the system recovery time. Instead, we use the integrated grounding line flux, which shows much more 

variability and whose change is directly related to the MISI mechanism. Prior to the calculation of critical slowing indicators, 135 

the model output is aggregated to remove short term 'weather noise' and detrended to remove nonstationarities (detrending is 

included in the Detrended Fluctuation Analysis (DFA) algorithm and therefore not required before calculation of the DFA 

indicator). Detrending was done using a Gaussian kernel smoothing function that has been shown to perform better than linear 

detrending (Lenton et al. 2012). A smoothing bandwidth was selected that removed long term trends without overfitting the 

model time series. Indicators are calculated over a moving window with a length of 300 years. 140 

 

From the processed time series, we calculate three different early warning indicators:  

1. Critical slowing is measurable as an increase in the state variable auto-correlation. We measure this here using the 

lag-1 auto-correlation function (Dakos et al., 2008; Scheffer et al., 2009; Held and Kleinen, 2004) applied to the 

grounding line flux over a 300 year moving window preceding each tipping point (hereafter referred to as the ACF 145 

indicator).  

2. Similarly, detrended fluctuation analysis (Peng et al., 1994) (hereafter referred to as the DFA indicator) measures 

increasing auto-correlation in a time series and we apply this with the same moving window approach. 

3. An additional consequence of critical slowing is that variance will increase as a tipping point is approached (Scheffer 

et al., 2009). We calculate variance of grounding line flux for each moving window and this can be used in conjunction 150 

with other indicators to increase robustness. 

 

Two different criteria are frequently used to assess early warning indicators and determine whether a tipping point is being 

approached. The first is simply to determine whether or not an indicator increases in the run up to a tipping event. This is often 

measured by calculating the nonparametric Kendall's 𝜏𝜏 coefficient, which equals one if the indicator is monotonically 155 

increasing with time (Dakos et al. 2008; Kendall, 1948). A second criteria is whether the indicators reach a critical value (in 

both cases a value of one) at the onset of the tipping event and thus can be used to predict when that event will happen. The 

second is clearly more useful but often fails in high complexity models. This failure can be a result of variability in the control 

variable pushing the system over a tipping point despite its long-term mean being far from its critical value.  
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3. Results 160 

The quasi-equilibrium simulation shows three potential tipping points with respect to the applied melt (Fig. 3). Upon crossing 

each threshold, indicated by the numbered blue dots in Fig. 3, PIG undergoes periods of not only rapid but (as we show later) 

also self-sustained and irreversible mass loss. At this stage, relying only on a record of changes in ice volume resulting from 

an increasing forcing (solid black line in Fig. 3), one can only speculate that these are indeed tipping points and more analysis 

is necessary to confirm this hypothesis, as we go on to later. The last of the three events causes an irreversible collapse within 165 

the entire model domain (Fig 3a). We increase basal melt rates gradually and in a quasi-steady-state manner to ensure that 

successive retreat events can be isolated and their effects do not overlap during the simulation. A more rapidly increasing 

forcing could lead to one tipping point cascading into the next and result in three individual tipping points being misinterpreted 

as only one event. Grounding line positions before each of these retreat events and after the final collapse are shown in Fig. 2. 

Events 1 and 2 each contribute approximately 20mm of sea-level rise while event 3, which arises after slightly more than 170 

doubling current melt rates, contributes approximately 100mm. The actual sea level rise that would result from this third and 

largest event is likely to be larger since in our simulation the effects stop at the domain boundary and in reality neighbouring 

drainage basins would be affected.  

3.1 Early warning for the marine ice sheet instability 

The three periods of MISI-driven retreat after a tipping point has been crossed can be identified clearly using early warning 175 

indicators (Fig. 4). The ACF early warning indicator increases and tends to one as the tipping points are approached (Fig. 4a-

c), indicating a tendency to an infinitely long recovery time as predicted by theory (Wissel, 1984). We calculate Kendall’s 𝜏𝜏 

coefficient to identify trends in the indicator, with a value of one representing a monotonic increase in the indicator with time 

(SI). The positive Kendall’s 𝜏𝜏 coefficient shows that in all three cases, the lag-1 auto-correlation increases before the onset of 

unstable retreat. Furthermore, the indicator reaches a critical value relatively close in time to when the MISI event gets 180 

underway. 

 

These findings are supported by the DFA indicator. For this early warning indicator, a scaling exponent is calculated that 

reaches a critical value at 1.5, equivalent to a random walk (rescaled here to reach a critical value at unity to aid comparison 

with the ACF indicator) (Livina and Lenton, 2007). Also here, the Kendall’s 𝜏𝜏 coefficient indicates a significant increase of 185 

the indicator when approaching the tipping points. We show the change in normalised variance calculated over each time 

window and in all cases this increases ahead of the tipping points being crossed with a positive Kendall’s 𝜏𝜏 coefficient. The 

increase in variance gives greater confidence to the findings of the other two early warning indicators that a tipping point is 

being crossed, although variance cannot be used directly to predict when that threshold will be crossed.  
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3.2 Hysteresis of Pine Island Glacier 190 

In order to verify that we have correctly identified tipping points using the early-warning indicators, we run the model to steady 

state for a given melt rate to search for hysteresis loops that indicate the presence of unstable grounding line positions. These 

simulations start from either the initial model setup (advance steady state) or the configuration just prior to the final tipping 

point (retreat steady state) and the model is run for a range of fixed melt rate until it reaches a steady state. The first two tipping 

events show relatively small but clearly identifiable hysteresis loops (Fig. 3b), for which recovery of the grounding line position 195 

requires reversing the forcing beyond the point at which retreat was triggered (i.e. as shown in Fig. 1c). The third event marks 

the onset of an almost complete collapse of PIG (Fig. 3a). Unlike the previous two, this collapse cannot be reversed to regrow 

the glacier for any value of the control parameter. This is an example of an irreversible tipping point, as shown in Fig. 1d.  

3.3 Robustness of the indicators 

We carry out several tests to assess the robustness of the early warning indicators, see Appendix B and C. Varying parameter 200 

choices in the time series processing steps can in some cases reduce the strength of the positive Kendall’s 𝜏𝜏 correlation before 

each tipping point, but in general the trends are consistent and not dependant on the selected parameters (Fig. B1). A window 

size of 300 years is the smallest for which we find that the early warning indicators can provide a useful prediction for when a 

tipping point will occur (Fig. B2). Larger window sizes lead to a steadily reducing positive Kendall’s 𝜏𝜏 correlation as a larger 

proportion of the time series is far away from a tipping event. To test whether the observed Kendall’s 𝜏𝜏 correlations could have 205 

been obtained by chance we generate randomised surrogates of the model time series, process them in the same way and 

calculate Kendall’s 𝜏𝜏 correlations. In this framework, the likelihood of obtaining our trend statistics by chance is estimated by 

the proportion of surrogate time series with a larger Kendall 𝜏𝜏 value than detected in the original data. We find that individually 

the DFA and ACF indicators are significant at the 10% level in all but one case and the significance of obtaining such positive 

trends for all three indicators at the same time is significant at the 1% level or less for all three MISI events (Table C1). 210 

 
The indicators we have tested provide early warning of tipping points as they are approached in our transient simulation with 

gradually increasing melt rates. It is important to clearly understand what critical threshold is identified by the early warning 

indicators.  In Fig. 3 the simulated steady-states show the crossing of the tipping point earlier than identified by the indicators 

in the transient simulation. Since the time-scales of ice are longer than the forcing time-scale, the ice-sheet system modelled 215 

here does not evolve along the steady-state branch (as shown schematically in Fig. 1c). Relaxation to a steady-state takes 

centuries to millennia in the simulations. This means that while technically the critical value of the control parameter (basal 

melt rate) might have already been crossed, the glacier state could still be reverted in the transient simulation at that point, if 

the basal melt rate was reduced below the critical threshold. This is true until the system state variable crosses its critical value 

(point xt in Fig. 1c) – and this is the point picked up by the early warning indicators. This complication in interpreting early 220 

warning indicators is inherent to ice dynamics because of its long response time scales. 
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4. Conclusions 

Conducting quasi-steady numerical experiments, whereby the underside of the PIG ice shelf is forced with a slowly increasing 

ocean-induced melt, we have established the existence of three distinct tipping points. Crossing each tipping point initiates 

periods of irreversible and self-sustained retreat of the grounding line (MISI) with significant contributions to global sea level 225 

rise. The tipping points are identified through critical slowing, a general behavioural characteristic of non-linear systems as 

they approach a tipping point. Early warning indicators have been successfully applied to detect critical slowing in other 

complex systems. We here show that they robustly detect the onset of the marine ice sheet instability in the simulations of the 

realistic PIG configuration which is promising for application of early warning to further cryospheric systems and beyond. 

While the possibility of PIG undergoing unstable retreat has been raised and discussed previously, this is to our knowledge the 230 

first time the stability regime of PIG has been mapped out in this fashion. The first and second tipping events are relatively 

small and could be missed without careful analysis of model results but nevertheless are important in that they lead to 

considerable sea level rise and would require a large reversal in ocean conditions to recover from. The third and final tipping 

point is crossed with an increase in sub-shelf melt rates equivalent to a +1.2°C change in ocean temperatures and leads to a 

complete collapse of PIG. Long-term warming and shoaling trends in Circumpolar Deep Water (Holland et al., 2019), in 235 

combination with changing wind patterns in the Amundsen Sea (Turner et al., 2017), can expose the PIG Ice Shelf to warmer 

waters for longer periods of time, and make temperature changes of this magnitude increasingly likely. 

Appendix A: Flowline experiments 

The MISI has been a major focus of modelling efforts within the glaciological community in recent years. In an effort to assess 

how ice-flow models capture this behaviour, a model inter-comparison experiment was performed to calculate the hysteresis 240 

loop of advance and retreat of a marine ice sheet on a retrograde slope, known as MISMIP experiment 3 (referred to as EXP 3 

hereafter, Pattyn et al., 2012). As a first step to establishing whether critical slowing can be observed prior to the MISI, we 

undertook a slightly modified version of this experiment using the Úa ice-flow model (Gudmundsson 2012, Gudmundsson 

2013, see methods). In our modified experiment, the marine ice sheet is forced towards tipping points through step 

perturbations in the control parameter as before, but with smaller steps and the additional constraint that the model must be in 245 

steady state after each perturbation before moving onto the next. In this experiment the chosen control parameter is the ice rate 

factor, a parameter linked to ice viscosity and temperature. 

 

Following each perturbation in the ice rate factor, we analyse the e-folding relaxation time (𝑇𝑇𝑅𝑅) of the state variable (in this 

case, grounding line position) to directly extract the recovery time of the model as it approaches each tipping point (both 250 

advance and retreat). Theory predicts that 𝑇𝑇𝑅𝑅 → ∞ close to a tipping point and that the point at which 𝑇𝑇𝑅𝑅−2 (as plotted versus 

the control parameter) reaches 0 thus identifies the critical value of the control parameter, beyond which a tipping point is 

crossed (Wissel 1984). We show this plot for both the advance and retreat scenarios of EXP 3 in Fig. A1. In both cases the 

https://doi.org/10.5194/tc-2020-186
Preprint. Discussion started: 4 August 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

relaxation time decreases as predicted by theory, even far from the tipping point. A linear fit through the last six perturbations 

yields a good agreement with theory and accurately predicts the critical value of the control parameter when compared to the 255 

analytical solution (red arrows in Fig. A1) given by Schoof (2007). Critical slowing still occurs outside of this range (equivalent 

to a change in ice temperature of >5 °C) but using these more distant points to forecast the tipping point would yield a less 

accurate prediction. These results therefore provide some insight into how far from the basin of attraction we can expect the 

predicted linear response. 

 260 

Appendix B: Indicator sensitivity 

Before calculating the ACF and DFA indicators, the model output grounding line flux was processed, as described in the 

methods. Two parameters in this processing step are the bin size into which data are aggregated and the bandwidth of the 

smoothing kernel that removes long term trends in the time series. In order to check that the increasing trends in our indicators 

are a robust feature of our results, regardless of these choices, we conducted a sensitivity analysis. The parameters were varied 265 

by +/- 50% and the indicators were recalculated for each resulting time series. As before, we assess the utility of an indicator 

by whether it shows an increasing trend before each tipping point, as measured by a positive Kendall's 𝜏𝜏 coefficient. The results 

of this sensitivity analysis are presented for each MISI event in Fig. B1. Kendall’s 𝜏𝜏 coefficient is positive for all tested 

combinations of parameters and all MISI events, although MISI event 2 is particularly insensitive to these parameter choices 

whereas the spread in Kendall’s 𝜏𝜏 coefficient is greater for the other two events.  270 

 

In general, critical slowing will only occur close to a tipping point. Determining how close to a tipping point a system must be 

in order to anticipate the approaching critical transition, i.e. the prediction radius, is an important question and also informs 

the selection of palaeo-records that could be used to detect an upcoming MISI event. We show results for a window size of 

300 years (i.e. a record length of 600 years), which is the shortest window size for which the DFA indicator provides an 275 

accurate prediction for all tipping events. We explored the prediction radius of our model by calculating Kendall's 𝜏𝜏 for the 

ACF and DFA indicators and the variance for a range of window lengths, see Fig. B2. For the main tipping event, preceded 

by the longest stable period, the indicators gradually lose their ability to anticipate a tipping event as more data is included 

further from the event. The same is true for the two smaller tipping events, but the drop off is quicker such that the indicators 

break down for window lengths > 500 years. These results suggest that the prediction radius is relatively small and window 280 

sizes that are too large, and hence include data far from a tipping point, lose their ability to serve as early-warning indicators. 
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Appendix C: Indicator significance 

In addition to a sensitivity analysis, it is important to check that trends in the calculated indicators are statistically significant 

and not the result of random fluctuations. We follow the method originally proposed by Dakos et al. (2012) and produce 

surrogate datasets from the model time series that have many of the same properties but should not contain any critical slowing 285 

trends. We generate 1000 of these datasets using an autoregressive AR(1) process based surrogate. For each of these datasets 

we calculate the ACF and DFA indicators and variance in the same way as with the model time series and then estimate the 

trend with values of Kendall’s 𝜏𝜏 coefficient. We calculate the probability of our results being a result of chance for each 

indicator and for all three combined as the proportion of cases for which the surrogate dataset was found to have a higher 

correlation than the model time series.  We find that P<0.1 in all but one instance for the ACF and DFA indicators but variance 290 

trends were generally less significant (Table C1). However, the combined probability that all three indicators would be equally 

positive as a result of chance was less than 0.02 for the first MISI event and less than 0.005 for the second two events.  
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Figure 1. Possible range of behaviours for a system state (e.g. ice flux) in response to perturbations in a control parameter (e.g. ocean 
temperature). A system can respond to a perturbation (a) in a linear way that is directly recoverable with a reversal of the forcing, 480 
(b) with a large response to a small perturbation but that is still directly recoverable, (c) with a large response to a small perturbation 
that is irreversible (hysteresis behaviour), and (d) with a large response that is irreversible for any change in the control parameter. 
Tipping points are crossed only in panels (c) and (d) and are indicated by x1, x2 and x3. Panel (c) also shows a transient response in 
which the system state lags behind changes in the control parameter as is the case for ice sheets and thus crosses the irreversible 
system state at a later point, xt. 485 
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Figure 2. Marine Ice Sheet Instability events for Pine Island Glacier. Shown are (a) grounding line positions before and after the 
three MISI driven glacier collapses with (b) a zoom to the initial events (coloured lines). The colormap indicates initially modelled 
ice velocity and the model domain boundary is indicated by a dashed black contour in panel a . Panels (c) and (d) show a transect 490 
through the main trunk of PIG, calculated as an average of properties between the two dashed magenta lines in (b). The vertical 
section along the transect is shown (c) at the initial steady state where fluxes (Qin and Qout) are in balance and (d) during a MISI event 
where retreat causes an increase in Qout, pushing the glacier to be out of balance and leading to further retreat. 
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 495 
Figure 3. Change in system state in terms of sea level equivalent ice volume as a function of the control parameter, which is the melt 
rate at the ice-ocean interface. (a) The model is run forward with a slowly increasing basal melt rate (solid black line) and shows 
three distinct tipping points (blue dots). The steady states for a given melt rate in both an advance and retreat configuration are 
plotted as dashed grey lines, arrows indicate the direction of the hysteresis. Panel (b) focuses on the model response before the larger 
tipping point (event 3) and shows the three windows that we analyze for early warning indicators as shaded red boxes (Fig. 4). 500 
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Figure 4. Early warning indicators for the marine ice sheet instability in Pine Island Glacier. Each panel shows the early warning 
indicators preceding each of the three MISI tipping event marked in Fig 3b, along with the linear trend extrapolated to the point in 
the simulation when the respective tipping event occurs. Increasing trends in all indicators are shown by a positive Kendall’s 𝜏𝜏 
coefficient which measures the correlation between each indicator and time between -1 and 1. 510 
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Figure A1. Results of EXP 3, showing change in GL position with time resulting from step perturbations in the ice rate factor (panel 
a). The calculated inverse relaxation time for each corresponding step change in rate factor in both the advance (square symbols) 
and retreat (circular symbols) phase is shown in panel b. The dashed line in panel b is a line of best fit, calculated for the five steps 515 
in rate factor that preceded the advance or retreat MISI phase. Red arrows indicate the rate factors for which the analytical solution 
predicts a MISI event and black arrows show the direction of the forcing towards each tipping point. 
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Figure B1. Sensitivity analysis for the ACF and DFA indicators. Each occurrence is the Kendall’s 𝜏𝜏 coefficient for a different choice 
of filtering bandwidth and data aggregation. The solid red and blue lines show the Kendall’s 𝜏𝜏 coefficient for the DFA and ACF 
indicators respectively, as calculated for the choice of parameters used in Fig. 3. 525 
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Figure B2. The effect of window length on the predictive power of early warning indicators for the MISI. The three panels show the 
change in Kendall's 𝜏𝜏 coefficient as calculated for each indicator versus window length for MISI events 1, 2 and 3 (panels a, b and c 530 
respectively). 
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Event Number Indicator name Indicator value Probability Total Probability 

MISI event 1 DFA 0.55 0.041 0.0198 

ACF 0.53 0.122 

Variance 0.37 0.315 

MISI event 2 DFA 0.60 0.022 0.0030 

ACF 0.76 0.012 

Variance 0.53 0.207 

MISI event 3 DFA 0.44 0.099 0.0044 
 

ACF 0.72 0.026 

Variance 0.89 0.018 

 
Table C1. Probability of the Kendall’s 𝜏𝜏 correlation for each indicator being a result of chance. One thousand surrogate time series 
of the state variable are generated and the indicators and Kendall’s 𝜏𝜏 correlations calculated for each one. The probability of a 535 
Kendall’s 𝜏𝜏 value is then the fraction of these surrogate time series with a higher correlation coefficient. The total probability is the 
fraction of surrogates for which all three indicators have a higher correlation coefficient than is observed in the original model time 
series. 
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